
PHYSICAL REVIEW E FEBRUARY 2000VOLUME 61, NUMBER 2
Strange attractor for the renormalization flow for invariant tori of Hamiltonian systems
with two generic frequencies

C. Chandre and H. R. Jauslin
Laboratoire de Physique, CNRS, Universite´ de Bourgogne, Boıˆte Postale 47 870, F-21078 Dijon, France

~Received 26 May 1999!

We analyze the stability of invariant tori for Hamiltonian systems with two degrees of freedom by con-
structing a transformation that combines Kolmogorov-Arnold-Moser theory and renormalization-group tech-
niques. This transformation is based on the continued fraction expansion of the frequency of the torus. We
apply this transformation numerically for arbitrary frequencies that contain bounded entries in the continued
fraction expansion. We give a global picture of renormalization flow for the stability of invariant tori, and we
show that the properties of critical~and near critical! tori can be obtained by analyzing renormalization
dynamics around a single hyperbolic strange attractor. We compute the fractal diagram, i.e., the critical
coupling as a function of the frequencies, associated with a given one-parameter family.

PACS number~s!: 05.45.Ac, 05.10.Cc, 45.20.Jj
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I. INTRODUCTION

Invariant tori play a fundamental role in the stability
Hamiltonian systems. For two degrees of freedom, they
as barriers in phase space. Renormalization-group~RG!
transformations have been proposed to understand
breakup of invariant tori for area-preserving maps@1,2# and
for Hamiltonian systems with two degrees of freedom@3–8#.
The RG-transformations described in Refs.@4,7,8# combine
an elimination of the irrelevant part of the perturbation, an
rescaling of phase space which is adapted to the frequenc
the specific invariant torus. These transformations are c
structed as canonical changes of coordinates. They have
implemented numerically for the golden mean torus@with
frequencyg5(A521)/2]. Based on the numerical analys
of the renormalization flow, the following picture emerges
trivial fixed pointH0 ~which is an integrable Hamiltonian! of
the RG-transformation characterizes the domain where
Hamiltonians have a smooth invariant torus with frequen
g, i.e., all Hamiltonians attracted toH0 by renormalization
are locally canonically conjugated to an integrable Ham
tonian. The boundary of the domain of attraction ofH0 is the
domain where the tori are critical, at the threshold of th
breakup. This boundary~named thecritical surface! is ex-
pected to be of codimension 1, and to coincide with the se
Hamiltonians with critical coupling beyond which they n
longer have an invariant torus with frequencyg. The critical
surface is expected to be the stable manifold of a nontri
fixed point H* . This global picture is still at the stage o
conjecture: In the perturbative regime, it is supported by r
orous results@4#. From the numerical analysis of the neig
borhood ofH* , the scaling properties of critical tori@9,10#
are found by these renormalization transformations: it i
strong argument in favor of the link betweenH* and critical
invariant tori. Furthermore, this renormalization approa
gives a method to calculate the critical coupling for a giv
one-parameter family~the value of the parameter for whic
the considered invariant torus is critical!. It has been verified
that this critical coupling coincides with the critical cou
plings obtained by other methods like Greene’s criterion@11#
PRE 611063-651X/2000/61~2!/1320~9!/$15.00
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or Laskar’s frequency analysis@12#.
Since the relevant quantity for stability is the ratio b

tween the two components of the frequency vector, we c
sider an invariant torus with frequency vectorv05(v,21)
where the frequencyv is irrational ~the frequency vector
must satisfy a Diophantine condition!. The purpose of the
RG-transformations we define is to analyze the stability
this invariant torus for Hamiltonians with two degrees
freedom. The idea is to set up a transformationR as a ca-
nonical change of coordinates that maps a HamiltonianH
into a rescaled oneR(H), such that irrelevant degrees o
freedom are eliminated. The transformationR should have
the following properties:R has an attractive fixed set~trivial
fixed set! composed by integrable Hamiltonians. Eve
Hamiltonian in its domain of attractionD has a smooth in-
variant torus with frequency vectorv0. The aim is to show
that there is another fixed set which lies on the boundary]D
~the critical surface! and that is attractive for every Hamil
tonian on]D.

Renormalization-group approaches for the breakup of
variant tori for arbitrary frequency have been proposed
circle maps@13–17# and for area-preserving maps@18#. The
boundary of Siegel disks has also been analyzed by re
malization@19#. The numerical results suggest thatstatistical
self-similarity characterizes the considered problems at c
cality. It has been conjectured that it can be described by
ergodic attractor of a renormalization transformation.

The numerical implementation of the RG-transformati
for Hamiltonian systems with two degrees of freedom, giv
support to this picture: we conjecture that the propert
~scaling factors and critical exponents! of critical tori can be
obtained by analyzing renormalization dynamics around
singlestrange chaotic attractor. Each critical torus display
sequence of critical exponents, which are the eigenvalue
the linearized renormalization map along its trajectori
Two different critical tori display the same set of critic
exponents but with a different probability distribution. In th
sense, we can speak of a single universality class descri
critical invariant tori for Hamiltonian systems with two de
grees of freedom.
1320 ©2000 The American Physical Society
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In Sec. II, we construct the RG transformations for
invariant torus with bounded entries in the continued fract
expansion of its frequency. In Sec. III, we apply this co
struction numerically for a set of frequencies which ha
only 1 and 2 in their continued fraction expansion. We sh
that a critical strange attractor can be expected to desc
the properties of critical invariant tori. In Sec. IV, we com
pute a fractal diagram which is the set of critical couplin
«c(v) for a given one-parameter family of Hamiltonians.
Sec. V, we construct a simple approximate RG transform
tion that gives qualitatively all the relevant features of t
renormalization dynamics.

II. RENORMALIZATION TRANSFORMATION

We describe the renormalization scheme for a torus w
arbitrary frequency vectorv05(v,21) where vP]0,1@ .
This renormalization relies upon the continued fraction
pansion ofv:

v5
1

a01
1

a11•••

[@a0 ,a1 , . . . #.

The best rational approximations ofv are given by the trun-
cations of this expansion:pk /qk5@a0 ,a1 , . . . ,ak5`#. The
corresponding periodic orbits with frequency vectorsvnk

5(pk /qk ,21) accumulate at the invariant torus. We c
‘‘resonance,’’ a vectornk5(qk ,pk) ~for k>1) which is or-
thogonal tovnk

. The word resonance refers to the fact th

the small denominatorsv0•nk that appear in the perturbatio
expansion are the smallest ones, i.e.,uv0•nku,uv0•nu for
any n5(q,p) different from zero andnk , and such thatuqu
,qk11 @20#. The sequence of resonances satis
uv0•nk11u,uv0•nku and limk→`uv0•nku50, andnk is given
by

nk5Na0
•••Nak21

n0 , ~2.1!

wheren05(1,0) andNai
denotes the matrix

Nai
5S ai 1

1 0D .

Moreover,v0•nk and v0•nk11 are of opposite sign~as the
stable eigenvalue ofNai

is negative!; thus the torus is ap
proached from above and from below by the sequence
periodic orbits with frequency vectors$vnk

%.
The main scale of the torus is characterized by the p

odic orbit with frequency vectorvn0
5(0,21) for the torus

with frequency vectorv05(v,21). The next smaller scale
is characterized byvn1

5(1/a0 ,21). The renormalization

transformation, denotedRa0
, changes the coordinates su

that the next smaller scale becomes the main one, i.e.,
main scale in the new coordinates is characterized byvn0

8

5vn1
. It acts as a microscope in phase space: it looks

system at a smaller scale in phase space, and at a longer
scale.
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We consider HamiltoniansH written in terms of actions
A5(A1 ,A2)PR2 and anglesw5(w1 ,w2)PT2, of the form

H~A,w!5H0~A!1V~V•A,w!, ~2.2!

where V5(1,a) is a vector not parallel to the frequenc
vectorv0, andH0 is given by

H0~A!5v0•A1
1

2
~V•A!2.

We notice that the invariant torus with frequency vectorv0
is located, forH0, at A such thatV•A50 and v0•A5E,
where E is the total energy of the system. The RG
transformationRa0

consists of four steps:
~1! A shift of the resonances constructed from the con

tion n1°n0: we require that cos@(a0,1)•w#5cos@(1,0)•w8#.
This change is done via a linear canonical transformation

~A,w!°~A8,w8!5~Na0

21A,Na0
w!.

This step changes the frequency vectorv0 into v085(v8,
21), since Na0

v052vv08 , where the frequencyv8 is
given by the Gauss map

v°v85v212@v21#, ~2.3!

and @v21# denotes the integer part ofv21. Expressed in
terms of the continued fraction expansion of the frequency
corresponds to a shift to the left

v5@a0 ,a1 ,a2 , . . . #°v85@a1 ,a2 ,a3 , . . . #.

The sequence of the resonances$nk% is mapped into the se
quence

nk85Na1
•••Nak21

n0 .

The linear term in the actions ofH0 is changed into
2vv08•A8.

~2! We rescale the energy by a factorv21 ~or equiva-
lently time by a factorv), and we change the sign of bot
phase space coordinates (A,w)°(2A,2w), in order to have
v08 as the new frequency vector, i.e., the linear term in
actions forH0 is v08•A. Furthermore,V5(1,a) is changed
into V85(1,a8)5„1,(a01a)21

…. The mapa°(a01a)21

is the inverse of the Gauss map, i.e., ifa5@b0 ,b1 , . . . #,
thena85@a0 ,b0 ,b1 , . . . #. We remark that ifa has the con-
tinued fraction expansiona5@b0 ,b1 , . . . #, and if we define
the two-sided sequence

@auv#5@ . . . ,b2 ,b1 ,b0ua0 ,a1 ,a2 . . . #,

then the map@auv#°@a8uv8# corresponds to the~two-
sided! Bernoulli shift

@ . . . ,b2 ,b1 ,b0ua0 ,a1 ,a2 , . . . #

°@ . . . ,b2 ,b1 ,b0 ,a0ua1 ,a2 , . . . #.

~3! Then we perform a rescaling of the actions:H is
changed into
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H8~A,w!5lHS A

l
,wD ,

with l5l(H) such that the mean value~i.e., the average
over the angles! of the quadratic term in the actions inH8 is
equal to (V8•A)2/2. This normalization condition is essen
tial for the convergence of the transformation. After Steps
2, and 3, the Hamiltonian expressed in the new variable

H8~A,w!5lv21HS 2
1

l
NA,2N21wD . ~2.4!

For H given by Eq.~2.2!, this expression becomes

H8~A,w!5v08•A1
v21

2l
~a01a!2~V8•A!2

1lv21VS 2
a01a

l
V8•A,2N21wD .

~2.5!

Thus the choice of the rescaling in the actions~Step 3! is

l5v21~a01a!2~112^V(2)&!, ~2.6!

where^V(2)& denotes the mean value of the quadratic par
V, in the (V8•A) variable.

~4! The last step is a canonical transformation that elim
nates the nonresonant part of the perturbation inH8.

The choice of which part of the perturbation is to be co
sidered resonant or not is somewhat arbitrary. The se
nonresonant modes includes the modes of the perturba
which are sufficiently far from the resonances in order
avoid small denominator problems during this eliminati
step. A reasonable choice for the nonresonant modes is
setI 2 of integer vectorsnPZ2 such thatun2u.un1u. A mode
which is not an element ofI 2, will be called resonant. We
notice that Eq.~2.1! defining nk5(qk ,pk) shows thatqk
>pk for k>0, i.e., the resonances are not elements ofI 2.
From the form of the eigenvectors ofNai

, one can see tha

every nPZ2\$0% goes intoI 2 after sufficiently many itera-
tions of matricesNai

~as the eigenvector ofNai

21 with an

eigenvalue of norm larger than 1 points intoI 2). In other
terms, a resonant mode at some scale turns out to be
resonant at a sufficiently smaller scale. We notice that0 is
not an element ofI 2, i.e., it is resonant.

We eliminate completely all the nonresonant modes of
perturbation by a canonical transformation, connected to
identity, which is defined by iterating KAM-type transforma
tions ~Kolmogovov-Arnold-Moser; one iteration reduces t
nonresonant modes of the perturbation from« to «2).

One iteration step is performed by a Lie transformat
US :(A,w)°(A8,w8) generated by a functionS(A,w). The
expression of the Hamiltonian in the new coordinates
given by

H85H+US5eŜH5H1$S,H%1
1

2!
$S,$S,H%%1•••,

~2.7!
,
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where $,% is the Poisson bracket of two functions of th
action and angle coordinates

$ f ,g%5
] f

]w
•

]g

]A
2

] f

]A
•

]g

]w
,

and the operatorŜ is defined asŜH5$S,H%. The generating
functionS is chosen such that the order« of the nonresonan
part ~the modes inI 2) of the perturbation vanishes. We con
struct recursively the HamiltoniansHn , starting with H1
5H8, such that the limitH` is canonically conjugated with
H8 but does not contain nonresonant modes. One step of
elimination procedure,Hn°Hn11, is done by applying a
change of coordinatesUn such that the order of the nonres
nant modes ofHn115Hn+Un is «n

2 , where«n denotes the
order of the nonresonant modes ofHn . At the n-th step, the

order of the nonresonant modes ofHn is «0
2n21

, where«0 is
the order of the nonresonant modes ofH8. If this procedure
converges, it defines a canonical transformationUS5U1+U2
+•••+Un+•••, such that the final HamiltonianH`5H8+US
does not contain any nonresonant mode.

The specific implementation of this step can be perform
in two versions: the first one~RG1! is a transformation act-
ing in a space of quadratic Hamiltonians in the actions of
form

H~A,w!5v0•A1
1

2
m~w!~V•A!21g~w!V•A1 f ~w!,

~2.8!

following Thirring’s approach@21,7,22#, wherem, g, and f
are three scalar functions of the angles. The second ver
~RG2! is a transformation acting on a more general family
Hamiltonians, with a power series expansion in the actio

H~A,w!5v0•A1(
j 50

`

f ( j )~w!~V•A! j , ~2.9!

following Ref. @8#, where$ f ( j )% are scalar functions of the
angles. The key-point for the implementation for quadra
Hamiltonians is that the KAM-transformations do not redu
the nonresonant modes of the quadratic part of the Ha
tonian. These transformations are performed by Lie trans
mations generated by functions linear in the actions. Follo
ing this procedure, the iterated HamiltoniansHn remain
quadratic in the actions.

The equations defining the elimination part for Hamilt
nians~2.8!, are given in Refs.@7,23#. Concerning those for
Hamiltonians~2.9!, they are given in the Appendix.

The convergence of the elimination procedure~step 4,
definition ofUS) has been rigorously analyzed in Ref.@4# for
the second version of the transformation. It has been pro
that for a sufficiently small perturbation, the elimination co
verges. Concerning the quadratic case, we lack, at this
ment, a theoretical framework to prove an analogous th
rem. The convergence of the elimination procedure outs
the perturbative regime is observed in both cases num
cally.

In summary, the RG-transformations for a given torus
as follows: first, some of the resonant modes of the per
bation are turned into nonresonant modes by a freque
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shift and a rescaling in phase space, then a KAM-type ite
tion eliminates these nonresonant modes, while produc
some new resonant modes.

Essentially, both versions of the RG transformation g
qualitatively and quantitatively the same results for the cl
of invariant tori considered in this article. The main adva
tage of the first version is that it is numerically more efficie
as one only works with three scalar functions of the ang
But from a theoretical point of view, there are some adv
tages to work with the second version, since the first o
leads asymptotically to nonanalytic Hamiltonians for the
tracting fixed sets~in the quadratic part in the actions! @7#.

III. NUMERICAL RESULTS

For a given frequencyv ~with bounded entries in its con
tinued fraction expansion!, the numerical implementation o
the RG transformation shows that there are two main
mains in the space of Hamiltonians: one where the itera
converges towards a family of integrable Hamiltonia
~trivial fixed set!, and the other where it diverges to infinit
These domains are separated by a surface calledcritical sur-
face~which is conjectured to coincide with the set of Ham
tonians which have a nonsmooth critical invariant torus
the considered frequency! and denotedS(v) in what fol-
lows.

The domain of attraction of the trivial fixed set is th
domain where the perturbation of the iterated Hamiltonia
tends to zero. However, the renormalization trajectories
not, in general, converge to a fixed Hamiltonian but to
trajectory related to the Gauss map~2.3!. The trivial fixed set
is composed by Hamiltonians of the form

Hl~A!5vl•A1
1

2
~Vl•A!2, ~3.1!

where vl5(v l ,21) and Vl5(1,a l). The renormalization
map transforms the vectorsvl and Vl following the Gauss
map

v l 115v l
212@v l

21#,

a l 115~a l1@v l
21# !21.

Thus the trivial fixed set can be a fixed point, a period
cycle, or in general a set of Hamiltonians labeled by a t
jectory of the Gauss map, i.e., by the asymptotic entries
the continued fraction expansion ofv.

Correspondingly, on the critical surfaceS(v), the renor-
malization flow converges to a periodic cycle if the fr
quencyv is a quadratic irrational~its continued fraction ex-
pansion is asymptotically periodic!, and to a low dimensiona
attracting set which is a strange chaotic attractor, in the c
wherev is not quadratic. The nontrivial attractor has a co
mension 1 stable manifold, i.e., one expansive direct
transverse to the critical surfaceS(v).

We take the definitions as formulated by Grebogiet al.
@24#: An attractor of a map is called strange if it is not a fin
number of points, nor a piecewise differentiable set. An
tractor is chaotic if typical orbits on it have a positiv
Lyapunov exponent.
a-
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Quadratic irrational frequencies.We start by analyzing
the effect onv anda, of s renormalization steps. Denote b
$bj% the continued fraction expansion ofa:a
5@b0 ,b1 , . . . #. The renormalizationRas21

Ras22
•••Ra0

changesv5@a0 ,a1 , . . . # into @as ,as11 , . . . #, and a into
@as21 ,as22 , . . . ,a0 ,b0 ,b1 , . . . #. If v has a periodic con-
tinued fraction expansion of periods.1, i.e., v
5@(a1 , . . . ,as)`#, we notice that a converges to
@(as , . . . ,a1)`#. ThereforeV converges to the unstable e
genvector of the matrixNas

•••Na1
~the stable eigenvector o

this matrix isv0). In that case, the RG transformation has
fixed points but two periodic cycles with periods: a trivial
cycle which is attractive in all the directions in the space
Hamiltonians, and a hyperbolic~critical! cycle with a codi-
mension 1 stable manifold. The trivial cycle characterizes
domain of Hamiltonians that have a smooth invariant to
of the considered frequency, and the nontrivial cyc
the domain where the torus is critical. These periodic cyc
can be equivalently considered as fixed points of the
transformation defined by the composed operatorRs5
Ras

Ras21
•••Ra1

. The nontrivial fixed point ofRs associ-

ated withv defines a universality class that we character
with critical exponents such as the total rescaling of ph
space~product of thes rescalings!, and the unstable eigen
value of the linearized map around the fixed point.

The interpretation of these attracting periodic cyc
~trivial and nontrivial! of the RG trajectories in terms of th
structure in phase space, of the invariant tori is the followin
in the perturbative regime, there exists a geometrical ac
mulation of a sequence of periodic orbits. The fact tha
also happens in the critical case, but with a nontrivial ra
implies universal self-similar properties of the critical tor
@9,10#.

Two frequenciesv1 andv2 having the same periodic ta
~and different first entries! in their continued fraction expan
sions (v1 andv2 are called equivalent!, belong to the same
universality class: after a finite number of steps of the R
transformation, the equations defining the renormalizat
trajectories forv1 are the same as those forv2. Thus they
have the same critical exponents and scaling factors.
initial integers in the continued fraction expansion are irr
evant for the breakup of the torus. Associated with this n
trivial fixed point, we also have nontrivial fixed sets relat
to the nontrivial fixed point by symmetries@25,4,6,23#,
which therefore belong to the same universality class.

Nonquadratic irrational frequencies.The RG transforma-
tions constructed in Sec. II are in principle defined for
arbitrary irrational frequencyvP]0,1@ . They are based on
the continued fraction expansion of the frequency. The
merical analysis of the renormalization transformation on
critical surfaceS(v) requires a large number of entries in th
continued fraction representation ofv5@a0 ,a1 ,a2 , . . . #,
since each iteration involves a matrix

Nai
5S ai 0

1 0D ,

and we have to perform enough iterations to reach the att
tor and to explore its shape. Therefore, in the numer
implementation, instead of selecting a generic freque
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given by a decimal representation, we consider directl
continued fraction, whose entries are chosen randomly f
a finite set of integers, for instance, 1 or 2. Each entry in
continued fraction expansion is chosen independently of
others according to the probabilityP(1)5p and P(2)51
2p. For p51, the frequency is equal to the golden meang,
and it is equal toA221 for p50.

For a given frequencyv with pP@0,1#, the numerical
analysis shows that there are two main attracting sets in
space of Hamiltonians: a trivial fixed set composed by in
grable Hamiltonians, and a nontrivial one which lies on t
critical surfaceS(v). Figures 1~a! and 1~b! depict a projec-
tion of the critical attractor obtained for two different typic
frequencies withp51/2, and Fig. 2 for a frequency withp
59/10, on the plane (f n1

(1) , f n1

(2)), wheref n1

( i ) denotes the Fou

rier coefficientn1 of the function f ( i )(w)5(nf n
( i )ei n•w of a

Hamiltonian ~2.9! on the critical attractor. These picture
have been obtained numerically with the transformation R
by representing the Hamiltonians in power series inA and in
Fourier series of the functions of the anglesf ( j )(w) . We

FIG. 1. ~a! and ~b!: Projection on the plane (f n1

(1) , f n1

(2)), of the
critical attractor obtained for two different frequencies whose c
tinued fraction expansion is a random sequence of 1 and 2
probability P(1)51/2.
a
m
e
e

he
-

e

2

truncate all terms of orders higher than (V•A)J, with J55,
and Fourier modes with maxi un i u.L, with L55. A RG-
trajectory on the critical attractor displays different scali
factors and critical exponents at each point of the trajecto
The distribution of these exponents depends only on the
quency of the torus.

In Fig. 3, we depict the values of the rescalin
(l i ,l i 11), wherel i denotes the value of the rescaling val
~2.6! after i iterations on the critical attractor. This picture
obtained for a frequencyv with p51/2, and the cut-off pa-
rameters areJ55 andL55. There are four main parts in
this graph. They correspond to the four possible change
the first entry~to the second one! of the continued fraction of
-
th

FIG. 2. Projection on the plane (f n1

(1) , f n1

(2)), of the critical attrac-
tor for a frequency whose continued fraction expansion is a rand
sequence of 1 and 2 with probabilityP(1)59/10.

FIG. 3. Values of the rescalings (l i ,l i 11) after i iterations on
the critical attractor of Fig. 1.
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the frequency: 1→1, 1→2, 2→1, 2→2. There are two
values for whichl i 115l i : 4.339 and 14.871 which are th
values for the rescaling for the frequencies (A521)/2 and
A221 @10,26#.

If we consider two frequencies associated with a sa
probability P(1)5p, the numerically computed projection
on the Fourier modes of the perturbation, of the critical
tractors for each frequency, look identical. This is illustrat
in Figs. 1~a! and 1~b! which show projection on the plan
( f n1

(1) , f n1

(2)), of the critical attractor obtained for two differen

frequencies whose continued fraction expansion is a ran
sequence of 1 and 2 with probabilityP(1)51/2. This sug-
gests that the properties of critical tori do not depend on
order of the entries in the continued fraction expansion,
only on the distribution of the values of the entries. In oth
words, critical tori with frequenciesv1 and v2 associated
with a same probability distribution in the continued fracti
expansion, arestatistically self-similar. We notice that this
discussion encompasses also the case of two equivalen
quencies.

For two frequencies associated to different distributio
of the entries in the continued fraction expansion~for differ-
ent values ofp), the support of projections~on the Fourier
modes of the perturbation! of the critical attractors are th
same, but the renormalization trajectories visit the attrac
with different densities. For instance, concerning the proj
tion of the attractor found for a frequency with probabili
p59/10 in Fig. 2, sincep>1/2 the renormalization trajec
tory is more concentrated around the fixed point~or around a
periodic cycle related to this fixed point by symmetry! ob-
tained for the golden mean (p51).

In order to describe a more precise image of the ren
malization flow, we consider an enlarged space where
add to the space of Hamiltonians a direction correspond
to the frequency of the considered torus. The RG trans
mations act in this enlarged space consisting of coup
(H,v) ~we iterate a renormalization operator for a giv
Hamiltonian H and for a given torus characterized by
frequencyv). The numerical results lead to the followin
conjecture: The enlarged space is divided into two m
parts: one where the RG iteration converges to a trivial fix
set, that consists of couples (Hl ,v l), whereHl is integrable
@of the form ~3.1!#. This trivial fixed set attracts all point
(H,v) such thatH has a smooth invariant torus with fre
quencyv. The dynamics on it is determined by the Gau
map. The domain of attraction of this trivial fixed set
bounded by a critical surfaceS which is the set of the critica
surfacesS(v), i.e., composed by points (H,v) such thatH
has a nonsmooth invariant torus with frequencyv. The sur-
faceS has a fractal structure: in Sec. IV, we display a sect
of this surface, and analyze the fractal diagram of a giv
one-parameter family. On the critical surfaceS, there is a
single critical attractor to which all Hamiltonians onS are
attracted. On these attractors~trivial or critical!, we have
subsets that are periodic cycles of all the periods; th
cycles correspond to quadratic irrational frequencies. For
stance, we have two fixed points on the nontrivial attrac
one corresponding to the golden meang, and the other one
to A221. We also have on the critical attractor, cycles~pe-
riodic and nonperiodic! related to the previous ones by sym
e
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metries, and therefore have identical properties. We can c
sider them as artifacts of the definition of the R
transformation~for instance, when the frequency is equal
the golden mean, the RG transformation can be modi
such that the cycle of period three@6,23# becomes a fixed
point!.

The critical attractor is not irreducible@27,28# because it
contains all the fixed points, periodic cycles, etc., cor
sponding to specific frequencies~e.g., quadratic frequencies!.
For a typical frequency, we expect the RG trajectory to v
a subset which is dense in the whole attractor.

Two invariant tori with frequenciesv1 andv2 belong to
the same universality class in the following sense: The pr
erties of these tori at the threshold of their breakup are gi
by the analysis of a single hyperbolic attractor of a giv
renormalization transformation. These two tori display t
same set of scaling factors and critical exponents~eigenval-
ues of the linearized map at each point of the attractor!, with
a different probability distribution, depending on the dist
bution of the entries in the continued fraction of the fr
quency.

Based on our numerical results, we can speak of a sin
generic universality class for the breakup of invariant tori
Hamiltonian systems with two degrees of freedom. The u
versal properties are obtained from a single critical attrac
of a RG transformation. The critical attractor itself is n
universal as it depends on the specific implementation of
transformation, but the properties derived from it such
scaling parameters or critical exponents, are universal.

IV. FRACTAL DIAGRAM

In order to visualize the critical surfaceS in the enlarged
space, in which the critical attractor is contained, we rep
sent a section ofS by computing the fractal diagram«c(v)
of the following one-parameter family of Hamiltonians:

H«~A,w!5v0•A1
1

2
~V•A!21«@cosw11cos~w11w2!#,

~4.1!

whereV5(1,0) andv05(v,21), wherev is the frequency
of the invariant torus. For the golden meang, we checked
that«c(g) coincides with the value of the coupling where th
RG iteration starts to diverge, i.e., asn tends to infinity, we
have

R nH«→` for «.«c~g!, ~4.2!

R nH«→H0 for «,«c~g!. ~4.3!

We compute«c(v), defined by Eqs.~4.2! and~4.3!, with R
the renormalization transformation constructed for quadr
Hamiltonians~2.8!. We base our analysis on the conjectu
that this «c(v) coincides with the threshold at which th
torus with frequencyv breaks up. Each frequencyv of the
diagram is chosen at random in the interval@0.5,1#. In order
to iterateR ~defined by a sequence of operatorsRai

), we
compute the ten first entries in the continued fraction exp
sion of v, and the tail of this expansion is filled with
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sequence of 1. The cutoff parameter forR ~the restriction of
the Fourier series to the modesn such that maxi un i u<L) is
L510.

The curve«c(v) depicted on Fig. 4, indicates the fract
structure of the critical surfaceS5øvS(v). For rational fre-
quencies,«c is zero. In Fig. 4, we observe strong resonan
~Arnold tongues! close to rational frequenciesv5p/q with
smallq. Similar pictures have been obtained for the stand
map @29–33#. The curve«c(v) for vP@0,0.5@ is obtained
from the one forvP@0.5,1# by the symmetry«c(v)5«c(1
2v) which can be found by applying the canonical transf
mation

~A,w!°~A8,w8!5~ T̃A,Tw!,

whereT̃ denotes the transposed matrix of

T5S 21 21

0 1 D .

The effect of this transformation onH« is just to change the
frequency fromv to 12v. From Fig. 4, we can see a nu
merical indication that the golden mean torus~with fre-
quency g'0.618) is the most robust one for the on
parameter family ~4.1!: «c(g).«c(v) for all other v
P@0.5,1#.

For each line going through the origin in th
M P-parameter plane for Hamiltonians

H«~A,w!5v0•A1
1

2
~V•A!21M cosw11P cos~w11w2!,

we can calculate in the same way, the critical coupling a
function of the frequencyv. This leads to pictures similar to
Fig. 4. Putting together all these sections, we obtain a crit

FIG. 4. Fractal diagram«c(v) for the one-parameter family o
Hamiltonians~4.1!.
s

d

-

a

al

surface«c(M ,P,v) for this two-parameter family of Hamil-
tonians and tori of frequenciesv. The universal critical at-
tractor is contained in a surface of this kind«c($ f n

( j )%,v), but
with an infinite number of parametersf n

( j ) which are the co-
ordinates of the considered space of Hamiltonians.

V. DIMENSIONAL RENORMALIZATION SCHEME

In this section, we construct an approximate renormali
tion scheme based on simple dimensional arguments.
close to the type of transformations considered in Refs.@34–
37#, and by MacKay and Stark@26#. This scheme is built by
arguments based on the dimensional analysis of the re
malization transformation. The aim is to see that the qual
tive features of the renormalization flow obtained in the p
vious section, are already contained in a very simple sche

We suppose that the initial Hamiltonian contains only t
two Fourier modesMeiw2 andPeiw1. The main scale is then
determined byn215(0,1) andn05(1,0). The next smaller
scale is represented by the moden05(1,0) together with the
next resonancen15(a0,1), wherea0 denotes the integer par
of v21. The transformation is a change of coordinates t
eliminates the moden215(0,1), and produce the moden1
5(a0,1). As n15a0n01n21, the amplitude of this mode is
M Pa0 ~to the lowest order!. Then we shift the Fourier
modes: the moden1 ~respectively,n0) becomes the moden0
~respectively, n21). Consequently the frequencyv is
changed intov8 according to the Gauss map~2.3!.

We obtain thus the following RG-scheme:

M 85k1P, ~5.1!

P85k2M Pa0, ~5.2!

v85@v21#2a0 , ~5.3!

wherea05@v21#. In general,ki are functions ofv, so the
RG scheme is equivalent to a system~5.1!–~5.2! driven by
the Gauss map. To give an example, we considerk15k2
5v22(a01a)2, wherea is determined by the inverse of th
Gauss mapa851/(a01a). We have chosen these coeffi
cients identical to the rescaling coefficient of the const
term in the actions for the renormalization explained in S
II. This choice is to a large extent arbitrary, and is mea
only as an illustration. The idea is that any function th
reflects the Gauss map should lead to qualitatively sim
results for the attractor and to the same critical expone
We denoteRa0

the following map, wherea05@v21#:

Ra0
:~M ,P,v,a!°~M 8,P8,v8,a8!.

For a given frequencyv5@a1 ,a2 , . . . #, the transformation
R is a sequence ofRai

. This transformationR has two main

domains: one where the iteration converges toM5P50
~trivial fixed set!, and one where the iteration diverges. If th
frequency is quadratic v5@b1 ,b2 , . . . ,bt ,(a1 ,a2 ,
. . . ,as)`#, there is a hyperbolic~nontrivial! fixed point for
the transformationRs5Ras

Ras21
•••Ra1

. The critical sur-
face is the codimension 1 stable manifold of this nontriv
fixed point.
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For nonquadratic irrational frequencies, the critical s
face is the codimension 1 stable manifold of a strange c
otic attractor: the chaoticity comes from the random
quence of theRai

. We depict this critical attractor on Fig. 5
computed using a frequency whose continued fraction
pansion is a random sequence of 1 and 2 withp51/2. The
shape of this attractor looks different from the attractor
Fig. 1. The precise shape of the attractor depends on the
the renormalization is performed. However, the attractor
tained by the simple dimensional scheme displays alre
the essential property that the critical invariant set is a c
otic strange attractor. The positive Lyapounov exponent c
responding to the direction transversal to the critical surf
is k'0.68~for p51/2), which is very close to the exact on
obtained with the complete scheme~also k'0.68). This
Lyapounov exponent@38–40# k gives the link between dif-
ferent Hamiltonians~of a given one-parameter family! near
the critical surface. It measures how far are two Hamil
niansH1 andH2 ~near the critical surface!, as we iterate the
renormalizationR:

R nH12R nH2'ekn~H12H2!.

This exponent depends onp because it is computed for
given RG trajectory which visits the different regions of t
attractor with somep-dependent distribution. Forp51
~golden mean!, k'0.49 and forp50, k'0.89.
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FIG. 5. Critical attractor for the approximate renormalizati
scheme for a frequency whose continued fraction expansion
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APPENDIX: EQUATIONS DEFINING THE KAM
TRANSFORMATIONS FOR HAMILTONIANS „2.9…

In this appendix, we describe one step of the eliminat
procedureH°H8, defined for Hamiltonians~2.9!, by con-
sidering thatf ( j ) depends on a small parameter«, such that
I2 f ( j ) is of orderO(«), whereI2 f ( j ) denotes the nonresonan
part of f ( j ), i.e.,

I2 f ( j )~w!5 (
nPI 2

f n
( j )ei n•w,

where f n
( j ) denotes the Fourier coefficient off ( j ) with fre-

quency vectorn. We defineH0 as

H0~A!5v0•A1^ f (2)&~V•A!2. ~A1!

In order to eliminate the nonresonant modes off ( j ) to the
first order in «, we perform a Lie transformation
U:(A,w)°(A8,w8) generated by a functionS of the form

S~A,w!5 i (
j 50

`

Y( j )~w!~V•A! j1aV•w. ~A2!

The expression of the Hamiltonian in the new coordinate
given by Eq.~2.7!. The first order in the perturbation of thi
Hamiltonian isV1$S,H0%. ThenS is determined by the fol-
lowing condition

I2$S,H0%1I2V50. ~A3!

The constanta eliminates the linear term in the (V•A) vari-
able,^ f (1)&, by requiring that̂ $S,H0%&1^ f (1)&V•A5const:

a52
^ f (1)&

2V2^ f (2)&
, ~A4!

andY( j ) is determined by

i v0•­Y(0)1I2 f (0)5const, ~A5!

i v0•­Y( j )1I2 f ( j )12i ^ f (2)&V•­Y( j 21)50, ~A6!

for j >1, where­ denotes the derivative with respect to th
angles:­[]/]w. These equations are solved by represent
them in the Fourier space:

Y(0)~w!5 (
nPI 2

f n
(0)

v0•n
ei n•w, ~A7!

Y( j )~w!5 (
nPI 2

1

v0•n
~ f n

( j )22^ f (2)&V•nYn
( j 21)!ei n•w,

~A8!

for j >1. Then we computeH85H+U by calculating recur-
sively the Poisson bracketsŜkH5ŜŜk21H, for k>1. Denot-
ing Hk5ŜkH, H8 becomes

H85 (
k50

`
Hk

k!
. ~A9!

We expandH8 in power series in the actions

a
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H8~A,w!5v0•A1(
j 50

`

f 8( j )~w!~V•A! j . ~A10!

The HamiltonianH8 is expressed by the image of the fun
tions f ( j ) given by the following expressions:

f 8( j )5 (
k50

` f k
( j )

k!
, ~A11!

where

f 0
( j )5 f ( j ), ~A12!

f 1
( j )5 i(

l 50

j

~ j 112 l !~ f ( j 112 l )V•­Y( l )2Y( j 112 l )V•­f ( l )!

~A13!
s

-

ev

:

k

-

n

1aV2~ j 11! f ( j 11)1 i v0•­Y( j ), ~A14!

f k11
( j ) 5 i(

l 50

j

~ j 112 l !~ f k
( j 112 l )V•­Y( l )2Y( j 112 l )V•­f k

( l )!

1aV2~ j 11! f k
( j 11) , ~A15!

for k>1 and j >0. Numerically, we computef 8( j ) for j
50,1, . . . ,J, by truncating the series~A11! to a finite sum
over 0<k<K. For the calculation off 8k

( j ) , it is not necessary
to compute it forj too large as its contribution inH8 might
exceed the truncation in the actions. More precisely,
computef 8k

( j ) for j 50, . . . ,min(J1k(J21),J1K2k). For in-

stance, if we truncate atJ53, we computeŜH up to order
(V•A)5 for K>3.
l
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