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We analyze the stability of invariant tori for Hamiltonian systems with two degrees of freedom by con-
structing a transformation that combines Kolmogorov-Arnold-Moser theory and renormalization-group tech-
nigues. This transformation is based on the continued fraction expansion of the frequency of the torus. We
apply this transformation numerically for arbitrary frequencies that contain bounded entries in the continued
fraction expansion. We give a global picture of renormalization flow for the stability of invariant tori, and we
show that the properties of criticdhnd near critical tori can be obtained by analyzing renormalization
dynamics around a single hyperbolic strange attractor. We compute the fractal diagram, i.e., the critical
coupling as a function of the frequencies, associated with a given one-parameter family.

PACS numbe(s): 05.45.Ac, 05.10.Cc, 45.20.Jj

I. INTRODUCTION or Laskar’s frequency analysj2].
Since the relevant quantity for stability is the ratio be-

Invariant tori play a fundamental role in the stability of tween the two components of the frequency vector, we con-
Hamiltonian systems. For two degrees of freedom, they acdider an invariant torus with frequency veciop=(w,—1)
as barriers in phase space. Renormalization-grdR@®)  where the frequencyo is irrational (the frequency vector
transformations have been proposed to understand thaust satisfy a Diophantine conditipnThe purpose of the
breakup of invariant tori for area-preserving mgp?] and  RG-transformations we define is to analyze the stability of
for Hamiltonian systems with two degrees of freed@r8].  this invariant torus for Hamiltonians with two degrees of
The RG-transformations described in Rd#,7,8] combine  freedom. The idea is to set up a transformati®ras a ca-
an elimination of the irrelevant part of the perturbation, and anonical change of coordinates that maps a Hamiltorian
rescaling of phase space which is adapted to the frequency ofto a rescaled on&(H), such that irrelevant degrees of
the specific invariant torus. These transformations are corfreedom are eliminated. The transformati@nshould have
structed as canonical changes of coordinates. They have begte following propertiesR has an attractive fixed sétivial
implemented numerically for the golden mean tofusth  fixed sej composed by integrable Hamiltonians. Every
frequencyy=(\/5—1)/2]. Based on the numerical analysis Hamiltonian in its domain of attractio® has a smooth in-
of the renormalization flow, the following picture emerges: avariant torus with frequency vectas,. The aim is to show
trivial fixed pointH, (which is an integrable Hamiltoniaof  that there is another fixed set which lies on the bounddry
the RG-transformation characterizes the domain where théhe critical surfaceand that is attractive for every Hamil-
Hamiltonians have a smooth invariant torus with frequencytonian ondD.
v, i.e., all Hamiltonians attracted tdy by renormalization Renormalization-group approaches for the breakup of in-
are locally canonically conjugated to an integrable Hamil-variant tori for arbitrary frequency have been proposed for
tonian. The boundary of the domain of attractiortyfis the  circle mapg13-17 and for area-preserving mapk8]. The
domain where the tori are critical, at the threshold of theirboundary of Siegel disks has also been analyzed by renor-
breakup. This boundargnamed thecritical surface is ex-  malization[19]. The numerical results suggest tis#tistical
pected to be of codimension 1, and to coincide with the set ofelf-similarity characterizes the considered problems at criti-
Hamiltonians with critical coupling beyond which they no cality. It has been conjectured that it can be described by an
longer have an invariant torus with frequengyThe critical ~ ergodic attractor of a renormalization transformation.
surface is expected to be the stable manifold of a nontrivial The numerical implementation of the RG-transformation
fixed pointH, . This global picture is still at the stage of for Hamiltonian systems with two degrees of freedom, gives
conjecture: In the perturbative regime, it is supported by rigsupport to this picture: we conjecture that the properties
orous result§4]. From the numerical analysis of the neigh- (scaling factors and critical exponentsf critical tori can be
borhood ofH, , the scaling properties of critical tof®,10]  obtained by analyzing renormalization dynamics around a
are found by these renormalization transformations: it is ainglestrange chaotic attractor. Each critical torus displays a
strong argument in favor of the link betwekly and critical ~ sequence of critical exponents, which are the eigenvalues of
invariant tori. Furthermore, this renormalization approachthe linearized renormalization map along its trajectories.
gives a method to calculate the critical coupling for a givenTwo different critical tori display the same set of critical
one-parameter familythe value of the parameter for which exponents but with a different probability distribution. In that
the considered invariant torus is critigalt has been verified sense, we can speak of a single universality class describing
that this critical coupling coincides with the critical cou- critical invariant tori for Hamiltonian systems with two de-
plings obtained by other methods like Greene’s critefibi  grees of freedom.

1063-651X/2000/6@)/13209)/$15.00 PRE 61 1320 ©2000 The American Physical Society



PRE 61 STRANGE ATTRACTOR FOR THE RENORMALIZATION . .. 1321

In Sec. Il, we construct the RG transformations for an We consider Hamiltoniankl written in terms of actions
invariant torus with bounded entries in the continued fractionA= (A;,A,) e R? and angleso=(¢1,¢,) € T?, of the form
expansion of its frequency. In Sec. lll, we apply this con-
struction numerically for a set of frequencies which have H(A, @) =Ho(A)+V(Q-A ¢), (2.2
only 1 and 2 in their continued fraction expansion. We show _
that a critical strange attractor can be expected to descrip&here 2=(1a) is a vector not parallel to the frequency
the properties of critical invariant tori. In Sec. IV, we com- Vectoramy, andHy is given by
pute a fractal diagram which is the set of critical couplings
ec(w) for a given one-parameter family of Hamiltonians. In Ho(A)= wy- A+ 1(Q~A)2.

Sec. V, we construct a simple approximate RG transforma- 2

tion that gives qualitatively all the relevant features of the ] ] ] )
renormalization dynamics. We notice that the invariant torus with frequency veaisy

is located, forH,, at A such thatQ2-A=0 and wy-A=E,
where E is the total energy of the system. The RG-
transformatioriR,  consists of four steps:

We describe the renormalization scheme for a torus with (1) A shift of the resonances constructed from the condi-
arbitrary frequency vectoiwy=(w,—1) where w €]0,1. tion v;— vy we require that cg$ag,1)- ¢]=cog(1,0)- ¢'].
This renormalization relies upon the continued fraction ex-This change is done via a linear canonical transformation
pansion ofw:

II. RENORMALIZATION TRANSFORMATION

(A@)—>(A",¢')=(N /AN, ).

“= 1 —l2.a. ...l This step changes the frequency veciay into w(=(w’,
ot at- .- —1), since N, wo=—we, where the frequency’ is

given by the Gauss map

The best rational approximations efare given by the trun- ) . .

cations of this expansiom,/q.=[ag,a;, . . . ,ax=>]. The w—o'=0 " —[o 7], 23
corresponding periodic orbits with frequency vectais,
=(pk/gx,—1) accumulate at the invariant torus. We call
“resonance,” a vectow,= (qy,py) (for k=1) which is or-
thogonal tow,, . The word resonance refers to the fact that
the small denominator®, - v, that appear in the perturbation w=[ag,a1,as, ...|—~w'=[a,a5,a3, ...].
expansion are the smallest ones, i@y v |<|wy-v| for

any v=(q,p) different from zero andy, and such thatg] ~ The sequence of the resonan¢eg is mapped into the se-
<Qy:+1 [20]. The sequence of resonances satisfiefuence

| g 11| <|wp- v and lim_...| wg- v | =0, andw, is given

and [w '] denotes the integer part @ 1. Expressed in
terms of the continued fraction expansion of the frequency, it
corresponds to a shift to the left

by =Ny -+ Ny v
=N, ---Ny », (2.1 The linear term in the actions oH, is changed into
° Kt —wwy- A
wherewy=(1,0) andN, denotes the matrix (2) We rescale the energy by a facter ! (or equiva-
' lently time by a factorw), and we change the sign of both
a 1 phase space coordinates, {p)— (— A, — ¢), in order to have
N, = ' ) w(, as the new frequency vector, i.e., the linear term in the
10 actions forHy is wy- A. Furthermore Q= (1,a) is changed

. into Q'=(1,a")=(1,(ap+ @) ~1). The mapar>(ay+a) !
Moreover,ao: »c and wy: »;1 are of opposite sigrias the g e inverse of the OGauss map, i.e.,aif=[b0,bol, .
stable eigenvalue o'f\lai is negativg; thus the torus is ap- thena' =[a,bo,by, . . . ]. We remark that ifx has the con-

proached from above and from below by the sequence Ofnued fraction expansioa=[bg,b, .. .], and if we define

periodic orbits with frequency vectofs,, }. the two-sided sequence
The main scale of the torus is characterized by the peri-
odic orbit with frequency vectow, =(0,—1) for the torus [alo]=[....bz,b1,bolag,ar,8; ...,

with frequency vectoiwy= (w,—1). The next smaller scale
is characterized byo,,lz(llao,—l). The renormalization

transformation, denote@an, changes the coordinates such

that the next smaller scale becomes the main one, i.e., the [....by,by,bolag,a;,a,, ...]
main scale in the new coordinates is characterizectulf;é/
=w, . Itacts as a microscope in phase space: it looks the

system at a smaller scale in phase space, and at a longer time(3) Then we perform a rescaling of the actioris:is
scale. changed into

then the map[a|w]—[a'|w’'] corresponds to thétwo-
sided Bernoulli shift

H[ A ,bz,bl,bo,a0|al,a2, - ]
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A where{,} is the Poisson bracket of two functions of the
H'(A,¢)=\H AL action and angle coordinates

Jf o Jf o
with A\=X\(H) such that the mean valuge., the average {f,g}=— Q973

over the anglesof the quadratic term in the actions i is dp OA A ¢

equal to @'-A)?/2. This normalization condition is essen- A i N .

tial for the convergence of the transformation. After Steps 1and tt_he gperz?]to‘s IS def'giﬂ "’}fﬁ' —{;H}%.t;l]'he generatlngt

2, and 3, the Hamiltonian expressed in the new variables igunc lonS1s chosen such that the oraeil the nonresonan
part(the modes il ™) of the perturbation vanishes. We con-

1 struct recursively the Hamiltoniandl,, starting with H,
H’(A,q;):)\le( ——NA,— N1¢>, (2.4 =H’, such that the limiH., is canonically conjugated with
A H’ but does not contain nonresonant modes. One step of this
elimination procedureH,—H,,, is done by applying a
change of coordinatds, such that the order of the nonreso-
-l nant modes oH,, ;=H°U, is sﬁ, whereg, denotes the
H' (A @)= w{)~A+K(aO+ @)2(Q'-A)2 order of the nonresonant modestdf . At the n-th step, the

order of the nonresonant modestof is gg“ 1, wheregg is
ot the order of the nonresonant modesHbf. If this procedure
+)\le( - TQ' A, - le)- converges, it defines a canonical transformatitas: U, °U,
o...olfpe- -+, such that the final Hamiltoniakl,,=H'°lg
(2.5  does not contain any nonresonant mode.
The specific implementation of this step can be performed

For H given by Eq.(2.2), this expression becomes

Thus the choice of the rescaling in the actigBgep 3 is in two versions: the first onéRG1) is a transformation act-
ing in a space of quadratic Hamiltonians in the actions of the
A=0 Hagta)X(1+2(V@)), (2.6)  form

(2) i 1

g,hi(;r(;(]\e/ (!{’(‘jir)m\:gﬁggfemean value of the quadratic part of H(A,qo)=w0~A+§m(¢’)(Q~A)2+g(¢)Q~A+ fo),

(4) The last step is a canonical transformation that elimi- (2.8
nates the nonresonant part of the perturbatiohl in ) o

The choice of which part of the perturbation is to be con-following Thirring’s approact{21,7,22, wherem, g, andf
sidered resonant or not is somewhat arbitrary. The set di'® thr.ee scalar funct|.ons of_the angles. The second version
nonresonant modes includes the modes of the perturbatidiRG2) is a transformation acting on a more general family of
which are sufficiently far from the resonances in order toHamiltonians, with a power series expansion in the actions,
avoid small denominator problems during this elimination w
step. A reasonable choice for the nonresonant modes is the . 0 AV
setl ~ of integer vectorsre 72 such thaj v,|>|,|. A mode H(A @)= A+120 Fe)@-AY, @9
which is not an element df, will be called resonant. We _
notice that Eq.(2.1) defining »=(qy,px) shows thatq, following Ref.[8], where{f()} are scalar functions of the
=p, for k=0, i.e., the resonances are not elements$ of angles. The key-point for the implementation for quadratic
From the form of the eigenvectors df,, one can see that Hamiltonians is that the KAM-transformations do not reduce
etery v 72(0 goes nol_ater suffiienty many era- {7 POMeSonant modes of he cuadrai part of the
tpns of matrlcesNai (as the elgenve.ctor .dﬂai with an mations generated by functions linear in the actions. Follow-
eigenvalue of norm larger than 1 points into). In other ing this procedure, the iterated Hamiltoniakk, remain
terms, a resonant_mode at some scale turns ogt to pe NOfuadratic in the actions.
resonant at a sufficiently smaller scale. We notice that The equations defining the elimination part for Hamilto-

not an element of -, i.e., it is resonant. nians(2.8), are given in Refs[7,23. Concerning those for

We eliminate completely all the nonresonant modes of th‘fHamiItonians(Z.g), they are given in the Appendix.
perturbation by a canonical transformation, connected to the Tpe convergence of the elimination procedustep 4,
identity, which is defined by iterating KAM-type transforma- yefinition ofis) has been rigorously analyzed in REf] for
tions (Kolmogovov-Arnold-Moser; one iteration reduces the the second version of the transformation. It has been proven
nonresonant modes of the perturbation frerto &). that for a sufficiently small perturbation, the elimination con-

One iteration step is performed by a Lie transformationyerges. Concerning the quadratic case, we lack, at this mo-
Us:(A,¢)—(A",¢") generated by a functioB(A,¢). The  ment, a theoretical framework to prove an analogous theo-
expression of the Hamiltonian in the new coordinates isem. The convergence of the elimination procedure outside
given by the perturbative regime is observed in both cases numeri-
cally.

In summary, the RG-transformations for a given torus act
as follows: first, some of the resonant modes of the pertur-
(2.7  bation are turned into nonresonant modes by a frequency

- 1
H'=Hels=eSH=H+{SH}+ {S{SH}}+- -,
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shift and a rescaling in phase space, then a KAM-type itera- Quadratic irrational frequenciesWe start by analyzing

tion eliminates these nonresonant modes, while producinthe effect onw and«, of s renormalization steps. Denote by

some new resonant modes. {bj} the continued fraction expansion ofa:«a
Essentially, both versions of the RG transformation give=[bg,b;, ...]. The renormalizationR,_ Ra_ - Ra,

qualitatively and quantitatively the same results for the clasghangesw=[ag,a;, . ..] into [as,as.1, . . - ], anij a into

of invariant tori considered in this article. The main advan-r5_ '3, ... a,by,by,...]. If ® has a periodic con-
tage of the first version is that it is numerically more efficientjnued fraction expansion of periods>1, ie., o
as one only works with three scalar functions of the angles:[(aL ...a).], we notice that @ converges to
But from a theoretical point of view, there are some advanI(as’ ... a1)..]. ThereforeQ converges to the unstable ei-

tages to work \_/vith the second v_ersion,_sin(_:e the first ONGenvector of the matrikl,, Ny, (the stable eigenvector of
Iead_s asymptotlca_lly 0 nonanalytlc Hamlltomans_ for the at'this matrix iswg) . In that csase the RG transformation has no
tracting fixed setéin the quadratic part in the actiont7]. fixed points bSt .two periodic’cycles with periad a trivial

cycle which is attractive in all the directions in the space of

IIl. NUMERICAL RESULTS Hamiltonians, and a hyperbolieritical) cycle with a codi-
For a given frequency (with bounded entries in its con- mension 1 stable manifold. The trivial cycle characterizes the
tinued fraction expansionthe numerical implementation of domain of Hamiltonians that have a smooth invariant torus

the RG transformation shows that there are two main do®f the considered frequency, and the nontrivial cycle,
mains in the space of Hamiltonians: one where the iteratio’® domain where the torus is critical. These periodic cycles
converges towards a family of integrable HamiltoniansC@n P€ equivalently considered as fixed points of the RG
(trivial fixed sel, and the other where it diverges to infinity. {ransformation defined by the composed operaiy=
These domains are separated by a surface cailédal sur- ~ Ra/Ra,_, - Ra,- The nontrivial fixed point ofR associ-
face(which is conjectured to coincide with the set of Hamil- ated withw defines a universality class that we characterize
tonians which have a nonsmooth critical invariant torus ofwith critical exponents such as the total rescaling of phase
the considered frequencynd denotedS(w) in what fol-  space(product of thes rescalingy and the unstable eigen-
lows. value of the linearized map around the fixed point.

The domain of attraction of the trivial fixed set is the  The interpretation of these attracting periodic cycles
domain where the perturbation of the iterated Hamiltoniandtrivial and nontrivia) of the RG trajectories in terms of the
tends to zero. However, the renormalization trajectories d&tructure in phase space, of the invariant tori is the following:
not, in general, converge to a fixed Hamiltonian but to ain the perturbative regime, there exists a geometrical accu-
trajectory related to the Gauss m@n3). The trivial fixed set mulation of a sequence of periodic orbits. The fact that it

is composed by Hamiltonians of the form also happens in the critical case, but with a nontrivial ratio,
implies universal self-similar properties of the critical torus
1 [9,10.
Hi(A)=e-A+ E(QI'A)Z’ (3.1) Two frequenciesv; andw, having the same periodic tail

(and different first entrigsin their continued fraction expan-

where oy =(w;,—1) and Q,=(1,a|). The renormalization Sions (@, andw, are called equivalentbelong to the same

map transforms the vectois, and Q, following the Gauss universality class: after a finite number of steps of the RG
map transformation, the equations defining the renormalization

trajectories forw, are the same as those fep. Thus they
o 1=o; *—[o 1, ha\_/e _the same critical exponents gnd scaling_ factors_. The
initial integers in the continued fraction expansion are irrel-
evant for the breakup of the torus. Associated with this non-
trivial fixed point, we also have nontrivial fixed sets related
to the nontrivial fixed point by symmetrieg25,4,6,23,

Thus the trivial fixed set can be a fixed point, a periodicWhich therefore belona to the same universality class
cycle, or in general a set of Hamiltonians labeled by a tra- 9 y :

jectory of the Gauss map, i.e., by the asymptotic entries o{. Nonquadratic |rr_at|onal frequer?meﬁ?he_ RG tra_nsforma-
. . : ions constructed in Sec. Il are in principle defined for an
the continued fraction expansion &f

Correspondingly, on the critical surfacw), the renor- 'tagglté?:l{igl:gtcliol‘?g::t::)enqiin;ﬁ)sieo]r? ,(ﬁ .tr;reh?rye a&gn?:asgrdhg r:w
malization flow converges to a periodic cycle if the fre- . . P o q Y-
. C= . . . merical analysis of the renormalization transformation on the
guencyw is a quadratic irrationalits continued fraction ex- e ; .
o : S : : critical surfaceS(w) requires a large number of entries in the
pansion is asymptotically periodicand to a low dimensional

attracting set which is a strange chaotic attractor, in the Cas%ontmued f_r action representation Qj:[ao,al,az, -1
? ; o .“since each iteration involves a matrix
wherew is not quadratic. The nontrivial attractor has a codi-

a = (a+[o )7L

mension 1 stable manifold, i.e., one expansive direction 0
transverse to the critical surfacw). N. = ( a
We take the definitions as formulated by Grebegial. 4 \1 0/

[24]: An attractor of a map is called strange if it is not a finite

number of points, nor a piecewise differentiable set. An atand we have to perform enough iterations to reach the attrac-
tractor is chaotic if typical orbits on it have a positive tor and to explore its shape. Therefore, in the numerical
Lyapunov exponent. implementation, instead of selecting a generic frequency
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/y‘f'/ FIG. 2. Projection on the planés(ll) ,fs,zl)), of the critical attrac-
el tor for a frequency whose continued fraction expansion is a random
,oc""'..p‘,‘.‘:-i"' sequence of 1 and 2 with probabiliB(1)=9/10.
e
"?m truncate all terms of orders higher tha@ (A)?, with J=5,
e 1 (b) and Fourier modes with mgx;|>L, with L=5. A RG-
\&@-_‘ﬁ% trajectory on the critical attractor displays different scaling
factors and critical exponents at each point of the trajectory.
»'5#{:3;.;3— The distribution of these exponents depends only on the fre-
S quency of the torus.
”2/ In Fig. 3, we depict the values of the rescalings
e (Ni Ni+1), where\; denotes the value of the rescaling value
—10-2 , , (2.6) afteri iterations on the critical attractor. This picture is
8% 10-3 f,E}) 8 x 10-3 obtained for a frequency with p=1/2, and the cut-off pa-

FIG. 1. (a) and (b): Projection on the planeff,ll) ,fg)), of the
critical attractor obtained for two different frequencies whose con

rameters ared=5 andL=5. There are four main parts in
this graph. They correspond to the four possible changes of
the first entry(to the second onef the continued fraction of

tinued fraction expansion is a random sequence of 1 and 2 with

probability P(1)=1/2.

©wtt

\

given by a decimal representation, we consider directly a

continued fraction, whose entries are chosen randomly fromn \

a finite set of integers, for instance, 1 or 2. Each entry in the
continued fraction expansion is chosen independently of the
others according to the probability(1)=p and P(2)=1
—p. Forp=1, the frequency is equal to the golden mean
and it is equal toy2—1 for p=0.

For a given frequencyw with pe[0,1], the numerical A1
analysis shows that there are two main attracting sets in the
space of Hamiltonians: a trivial fixed set composed by inte-
grable Hamiltonians, and a nontrivial one which lies on the
critical surfaceS(w). Figures 1a) and 1b) depict a projec-
tion of the critical attractor obtained for two different typical
frequencies withp=1/2, and Fig. 2 for a frequency with
=9/10, on the planef(}),(?)), wheref{) denotes the Fou-

rier coefficientr; of the functionf(¢)=3 e ¢ of a

NS
512

3

(L 1

11

e T

B

Hamiltonian (2.9) on the critical attractor. These pictures 22
have been obtained numerically with the transformation RG2

by representing the Hamiltonians in power serieéiand in
Fourier series of the functions of the anglE®(¢) . We

20

FIG. 3. Values of the rescalings.{(,\;, ) afteri iterations on
the critical attractor of Fig. 1.
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the frequency: +1, 1—-2, 2—1, 2—2. There are two metries, and therefore have identical properties. We can con-

values for which\;,;=X\;: 4.339 and 14.871 which are the sider them as artifacts of the definiton of the RG

values for the rescaling for the frequenciegs(-1)/2 and  transformation(for instance, when the frequency is equal to

J2—-11[10,26. the golden mean, the RG transformation can be modified
If we consider two frequencies associated with a sam&Uch that the cycle of period thr¢6,23] becomes a fixed

o - : o f).
probability P(1)=p, the numerically computed projections PO'NY- _ _ _ .
on the Fourier modes of the perturbation, of the critical at- The critical attractor is not irreducibi7,2§ because it

tractors for each frequency, look identical. This is iIIustratedcoma'.ns all the _f!xed points, periodic cy(_:les, etc., corre-
in Figs. Xa) and b) which show projection on the plane sponding to specific frequenciés.g., quadratic frequencies

e . . For a typical frequency, we expect the RG trajectory to visit
(1) §(2) ,
(f,,1 ,f,,l), of the critical attractor obtained for two different a subset which is dense in the whole attractor.

frequencies whose continued fraction expansion is a random Two invariant tori with frequencies, and w, belong to
sequence of 1 and 2 with probabili(1)=1/2. This sug- the same universality class in the following sense: The prop-
gests that the properties of critical tori do not depend on therties of these tori at the threshold of their breakup are given
order of the entries in the continued fraction expansion, buby the analysis of a single hyperbolic attractor of a given
only on the distribution of the values of the entries. In otherrenormalization transformation. These two tori display the
words, critical tori with frequencie®, and w, associated same set of scaling factors and critical exponéatgenval-
with a same probability distribution in the continued fraction ues of the linearized map at each point of the attracteith
expansion, arestatistically self-similar. We notice that this a different probability distribution, depending on the distri-
discussion encompasses also the case of two equivalent freution of the entries in the continued fraction of the fre-
guencies. quency.

For two frequencies associated to different distributions Based on our numerical results, we can speak of a single
of the entries in the continued fraction expansitor differ-  generic universality class for the breakup of invariant tori for
ent values ofp), the support of projectionén the Fourier —Hamiltonian systems with two degrees of freedom. The uni-
modes of the perturbatiprof the critical attractors are the Vversal properties are obtained from a single critical attractor
same, but the renormalization trajectories visit the attractopf a RG transformation. The critical attractor itself is not
with different densities. For instance, concerning the projecuniversal as it depends on the specific implementation of the
tion of the attractor found for a frequency with probability transformation, but the properties derived from it such as
p=9/10 in Fig. 2, sincep=1/2 the renormalization trajec- Scaling parameters or critical exponents, are universal.
tory is more concentrated around the fixed péortaround a
periodic cycle related to this fixed point by symmetnb- IV. FERACTAL DIAGRAM
tained for the golden meamp&1).

In order to describe a more precise image of the renor- In order to visualize the critical surfacgin the enlarged
malization flow, we consider an enlarged space where wépace, in which the critical attractor is contained, we repre-
add to the space of Hamiltonians a direction correspondingent a section of by computing the fractal diagrasy(w)
to the frequency of the considered torus. The RG transforof the following one-parameter family of Hamiltonians:
mations act in this enlarged space consisting of couples
(H,w) (we iterate a renormalization operator for a given 1 )

Hamiltonian H and for a given torus characterized by its He(A@)= o A+ 5(Q-A)"+e[COSp1+COSL @1+ ¢2) ],
frequencyw). The numerical results lead to the following 4.1
conjecture: The enlarged space is divided into two main

parts: one Whgre the RG iteration converges tq a trivial fixedyhereQ = (1,0) andew,=(w,— 1), wherew is the frequency
set, that consists of couplesi(,®|), whereH, is integrable  of the invariant torus. For the golden megnwe checked
[of the form (3.1)]. This trivial fixed set attracts all points thate () coincides with the value of the coupling where the

(H,®) such thatH has a smooth invariant torus with fre- RG jteration starts to diverge, i.e., agends to infinity, we
guencyw. The dynamics on it is determined by the Gaussygye

map. The domain of attraction of this trivial fixed set is

bounded by a critical surfacgwhich is the set of the critical R'H o0
surfacesS(w), i.e., composed by pointdH(,») such thatH ©
has a nonsmooth invariant torus with frequenrgyThe sur- N

faceS has a fractal structure: in Sec. IV, we display a section R™M,—Hp for e<ed(y). (4.3

of this surface, and analyze the fractal diagram of a given

one-parameter family. On the critical surfaSe there is a We computes (), defined by Eqs(4.2) and(4.3), with R
single critical attractor to which all Hamiltonians of are  the renormalization transformation constructed for quadratic
attracted. On these attractofsivial or critical), we have Hamiltonians(2.8). We base our analysis on the conjecture
subsets that are periodic cycles of all the periods; thesthat thisec(w) coincides with the threshold at which the
cycles correspond to quadratic irrational frequencies. For intorus with frequencyw breaks up. Each frequeney of the
stance, we have two fixed points on the nontrivial attractordiagram is chosen at random in the interM@l5,1]. In order
one corresponding to the golden mepnand the other one, to iterateR (defined by a sequence of operatdeg), we

to \2—1. We also have on the critical attractor, cyclps-  compute the ten first entries in the continued fraction expan-
riodic and nonperiodicrelated to the previous ones by sym- sion of w, and the tail of this expansion is filled with a

for 8>8c(7)1 (42)
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0.03 T T

T T T T T T T surfacee.(M,P,w) for this two-parameter family of Hamil-
tonians and tori of frequencies. The universal critical at-
tractor is contained in a surface of this king{f}, »), but
with an infinite number of parametef§’ which are the co-
ordinates of the considered space of Hamiltonians.

V. DIMENSIONAL RENORMALIZATION SCHEME

In this section, we construct an approximate renormaliza-
. tion scheme based on simple dimensional arguments. It is
close to the type of transformations considered in &%
37], and by MacKay and Starlk6]. This scheme is built by
arguments based on the dimensional analysis of the renor-
malization transformation. The aim is to see that the qualita-
tive features of the renormalization flow obtained in the pre-
vious section, are already contained in a very simple scheme.
We suppose that the initial Hamiltonian contains only the
two Fourier moded/e'%2 andP € 1. The main scale is then
: : determined bywv_,;=(0,1) andry=(1,0). The next smaller
0 ! T + ' ! ! 1 scale is represented by the magg=(1,0) together with the
1/2 3/5 2/3 3/4 4)5 1 next resonance, = (ag,1), wherea, denotes the integer part
of ™. The transformation is a change of coordinates that
FIG. 4. Fractal diagrane.(w) for the one-parameter family of eliminates the mode._,=(0,1), and produce the modg
Hamiltonians(4.1). =(ag,1). Asv;=agyy+v_q, the amplitude _of this mode_ is
MP? (to the lowest order Then we shift the Fourier

sequence of 1. The cutoff parameter fr(the restriction of modes: the mode, (respectivelyz,) becomes the mode,

: : A . (respectively, v_4). Consequently the frequency is
;c_hi 1Foourler series to the modessuch that maxy;|<L) is changed intow’ according to the Gauss map.3)

We obtain thus the following RG-scheme:

go(w)

The curvee(w) depicted on Fig. 4, indicates the fractal

structure of the critical surfacg=U ,S(w). For rational fre- M’ =k (5.1)
guenciesg. is zero. In Fig. 4, we observe strong resonances ! '
(Arnold tongues close to rational frequencies= p/q with — koM P2 (5.2)
smallg. Similar pictures have been obtained for the standard 2 ’ '
map [29-33. The curvees(w) for w€[0,0.5 is obtained o' =[0 Y-a,, 5.3

from the one forw €[0.5,1] by the symmetng (w)=e.(1
— ) which can be found by applying the canonical transfor-

’ whereag=[w!]. In generalk; are functions ofw, so the
mation

RG scheme is equivalent to a systél)—(5.2) driven by
the Gauss map. To give an example, we conslderk,

=w %(ay+ a)?, wherea is determined by the inverse of the
Gauss mape’ =1/(ag+ «). We have chosen these coeffi-
cients identical to the rescaling coefficient of the constant
1 _1) term in the actions for the renormalization explained in Sec.

(A @)—(A,¢)=(TATe),

whereT denotes the transposed matrix of

Il. This choice is to a large extent arbitrary, and is meant
only as an illustration. The idea is that any function that
) _ o reflects the Gauss map should lead to qualitatively similar
The effect of this transformation d, is just to change the yegyts for the attractor and to the same critical exponents.

frequency fromw to 1— w. From F|g 4, we can see a nu- \ye denoter,, the following map, wher@y=[w1]:
merical indication that the golden mean tor(with fre-

T=

0 1

guency y~0.618) is the most robust one for the one- R. (M.P M P o a
parameter family (4.1): &(y)>&c(w) for all other (M,P.0,a)=>(M",P’,0,a’)
€[0.5,1].

For a given frequencw=[a;,a,, ...], the transformation
R is a sequence R, . This transformatiork has two main
domains: one where the iteration convergesMe=P=0

1 ) (trivial fixed se}, and one where the iteration diverges. If the
Heo(A @)= o A+ 5 (2-A)"+M COSp1 +P COS @1+ ¢2),  frequency is quadratic w=[by,b,, ... b, (a;,a,,

.,as)» ], there is a hyperboli¢nontrivial) fixed point for

we can calculate in the same way, the critical coupling as &€ transformatiorRs=R, Ra_ - --Ra,. The critical sur-
function of the frequencw. This leads to pictures similar to face is the codimension 1 stable manifold of this nontrivial
Fig. 4. Putting together all these sections, we obtain a criticafixed point.

For each line going through the origin in the
M P-parameter plane for Hamiltonians
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0.08 T . . . . . T . APPENDIX: EQUATIONS DEFINING THE KAM
3 TRANSFORMATIONS FOR HAMILTONIANS (2.9

In this appendix, we describe one step of the elimination
procedureH—H', defined for Hamiltonian$2.9), by con-
sidering thatf)) depends on a small parametgrsuch that
I~ £@ is of orderO(e), wherel~ 1) denotes the nonresonant
part of f0) i.e.,

mf0(g)= X P,
vel

where f{)) denotes the Fourier coefficient 6 with fre-
quency vectow. We defineH, as

""‘J'M- .'_\!S\.-.:;;‘:-" '\";'*.',\, Bt

'-*'3«‘;'-::‘5,.‘%&:{5:-.32.‘.::.':_-:“:"‘7-a- 1 Ho(A)=awp- A+ (f@)(Q-A)2. (A1)
A

In order to eliminate the nonresonant modesf@f to the

S ] first order in e, we perform a Lie transformation

U:(A,)—(A',¢") generated by a functio8 of the form

0 M 4.5

A=, YD(¢)(Q-A)+aQ-e. A2
FIG. 5. Critical attractor for the approximate renormalization S(A.¢) jzo (@) ) @ (A2)

scheme for a frequency whose continued fraction expansion is a ) ) o . .
random sequence of 1 and 2 with probabilyl)=1/2. The expression of the Hamiltonian in the new coordinates is

given by Eq.(2.7). The first order in the perturbation of this
For nonquadratic irrational frequencies, the critical sur-Hamiltonian isV+{S,Ho}. ThenSis determined by the fol-
face is the codimension 1 stable manifold of a strange chdoWwing condition
otic attractor: the chaoticity comes from the random se-
qguence of thé%ai. We depict this critical attractor on Fig. 5,

computed using a frequency whose continued fraction exThe constana eliminates the linear term in theX- A) vari-

pansion is a random sequence of 1 and 2 with1/2. The  able,(fM)), by requiring that{S,H})+(f ) Q. A= const:

shape of this attractor looks different from the attractor in

Fig. 1. The precise shape of the attractor depends on the way (fD)

the renormalization is performed. However, the attractor ob- A== o2 N (A4)
) ) ) . . 2Q04(f19))

tained by the simple dimensional scheme displays already

the essential property that the critical invariant set is a chagngy() s determined by

otic strange attractor. The positive Lyapounov exponent cor-

I7{S,Ho}+1"V=0. (A3)

responding to the direction transversal to the critical surface iy YO+ f(O=const, (A5)
is k~0.68(for p=1/2), which is very close to the exact one _ _ _
obtained with the complete schentalso k~0.68). This iy YD+ fO+2i(FEH Q. gvyU-V=0, (AB6)

Lyapounov exponent38—4(Q « gives the link between dif-

ferent Hamiltoniangof a given one-parameter famjlyear ~ for j=1, whered denotes the derivative with respect to the
the critical surface. It measures how far are two Hamilto-angles:d=d/d¢. These equations are solved by representing
niansH,; andH, (near the critical surfageas we iterate the them in the Fourier space:

renormalizationR. (0)

YO )= >
RnHl_RnszeKn(Hl_Hz). vel Wy V

el e (A7)

This exponent depends gmbecause it is computed for a YD ()= > L(f(j)_2<f(2)>9,VY(i_l))eiV"P’
given RG trajectory which visits the different regions of the pei- @0 v’ g
attractor with somep-dependent distribution. Fop=1 (A8)

I ~0.4 forp= ~0.89.
(golden meay «~0.49 and forp=0, x~0.89 for j=1. Then we computél’=Hel{ by calculating recur-

sively the Poisson bracke®H =SS~ !H, for k=1. Denot-
ing H,=5H, H' becomes
We acknowledge useful discussions with G. Benfatto, G. "
Gallavotti, H. Koch, J. Laskar, and R.S. MacKay. Support H’=2 ﬂ
from EC Contract No. ERBCHRXCT94-0460 for the project i=o k!’
“Stability and Universality in Classical Mechanics” is ac-
knowledged. We expandH’ in power series in the actions
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H' (A @)=y A+ EO ') (Q-A).  (A10)
=

The HamiltonianH’
tions f) given by the following expressions:

= £()
£r0) = 2 kL (A11)
where
fP=£0), (A12)
£)= ,2 (j+1-1)(F0+1NQ. gy —yi+1-D . gf )

(A13)

C. CHANDRE AND H. R. JAUSLIN

is expressed by the image of the func-

PRE 61

+a02(j+1)f0 Dt iy oYW, (A14)

]
f0,=i> (j+1-hH(fI* 1 Q. gy -vyi+1-Dq. gf)
I=0

+aQ?(j+1)fi*th, (A15)

for k=1 and j=0. Numerically, we computd’{) for j
=0,1,... ], by truncating the serief\11) to a finite sum
over O<k=K. For the calculation of (", it is not necessary

to compute it forj too large as its contribution iAl’ might
exceed the truncation in the actions. More precisely, we
computef’{) for j=0, ... min(@+kJ—1),J+K—K). For in-
stance, if we truncate at=3, we computeSH up to order
(Q-A)° for K=3.
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